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Few studies have been conducted into the use of knowledge transfer for tackling
geo-simulation problems. Cellular automata (CA) have proven to be an effective and
convenient means of simulating urban dynamics and land-use changes. Gathering
the knowledge required to build the CA may be difficult when these models are
applied to large areas or long periods. In this paper, we will explore the possibil-
ity that the knowledge from previously collected data can be transferred spatially
(a different region) and/or temporally (a different period) for implementing urban
CA. The domain adaptation of CA is demonstrated by integrating logistic-CA with
a knowledge-transfer technique, the TrAdaBoost algorithm. A modification has been
made to the TrAdaBoost algorithm by incorporating a dynamicweight-trimming tech-
nique. This proposed model, CAtrans, is tested by choosing different periods and study
areas in the Pearl River Delta. The ‘Figure of Merit’ measurements in the experiments
indicate that CAtrans can yield better simulation results. The variance of traditional logis-
tic-CA is about 2–5 times the variance of CAtrans until the number of new data reaches
30. The experiments have demonstrated that the proposed method can alleviate the
sparse data problem using knowledge transfer.

Keywords: knowledge transfer; cellular automata; urban simulation; model adaptation

1. Introduction

The sharing and reuse of existing data and knowledge for geographical applications
among different regions and domains has proven to be necessary and useful (Fonseca
et al. 2000). Some studies have been carried out for sharing data and knowledge in geo-
graphical information systems (GIS) using the method of spatial ontologies (Fonseca and
Egenhofer 1999). However, this assumes that designers should define and conceptualize
the knowledge in a domain by providing standardized vocabulary, semantic terminology,
and methodologies during the design stage.

Cellular automata (CA) are bottom-up simulation tools that rely on transition rules
for modeling the behavior of complex systems (Wolfram 1986, 2006, Toffoli and
Margolus1987). Over the last three decades, CA for geographical simulation have prolifer-
ated because of their simplicity, flexibility, and intuitiveness (Santé et al. 2010). Although
there are other types of bottom-up model (e.g., agent-based models), CA have been widely
used for simulating a variety of geographical phenomena, such as urban development
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1830 X. Li et al.

(Batty and Xie 1994, Wu 1998, Li 2011), land-use changes (White and Engelen 1993),
landscape evolution (Soares-Filho et al. 2002), wildfire spread (Clarke et al. 1997), and
population dynamics (Couclelis 1988).

The reusability of CA in geographical applications is appealing for a number of rea-
sons: (1) inexperienced users do not want to build a brandnew CA model; (2) the collection
of a new set of training data is expensive and time-consuming; and (3) past experiences or
old data are useful for capturing long-term trends. However, the reuse of CA for solv-
ing real problems does pose certain challenges. Studies have shown that the use of fixed
transition rules will result in a large amount of simulation error because of spatiotempo-
ral heterogeneity at a regional scale or over a long period (Li et al. 2008). CA can be
implemented by rebuilding the models from scratch using newly collected training data.
However, obtaining labeled training data about land cover from remote-sensing imagery is
still a tedious job in most situations (e.g., relatively unfamiliar environment and inacces-
sible locations) (Rajan et al. 2008). A solution to this dilemma is to transfer the transition
rules of CA from past applications to new applications.

Transfer learning techniques have attracted increasing attention in computer sciences
in recent years (Dai et al. 2007). These techniques have mainly been developed in the field
of data mining and machine learning. The goal of transfer learning is to improve learning
by transferring knowledge obtained from previous tasks to new tasks in the target domain.
Transfer learning was primarily motivated by the need to learn efficiently (Schmidhuber
1995).

Traditional machine-learning methods often make predictions using statistical models
that are trained on labeled data. Many applications often contain a lot (e.g., hundreds or
thousands) of previously (old) collected labeled data. It would be useful if these old data,
plus a tiny set (e.g., 5–10) of new, collected data, could be used for building models. Most
traditional methods assume that the sample distribution of previously collected data is the
same as that of new data. However, this assumption may not be true because old data
usually have a different sample distribution than the data from the target domain. Such
distribution variations (diff-distribution) are responsible for poor simulation performances
using all these training data for large areas which may consist of a number of cities (Li
et al. 2008).

Transfer learning can effectively deal with the situations in which the domains, tasks,
and distributions vary between training and testing data.A well-known method for transfer
learning is that of boosting algorithms. One of the first simple boosting procedures in com-
putational learning theory was developed by Schapire (1990).Freund and Schapire (1995)
later proposed a ‘boost by majority’ algorithm which uses many weak (not accurate) learn-
ers simultaneously to improve the performance of the simple boosting algorithm (Friedman
et al. 2000).

Transfer learning techniques for solving geographical problems are quite unique
because of the inherent spatiotemporal characteristics. This paper attempts to develop
a new method of domain adaption across spatiotemporal dimensions that can facilitate
urban and land-use simulation. We have used transfer learning techniques because previ-
ously collected data are useful for defining transition rules of CA. However, these previous
experiences cannot be used directly without knowledge transfer. We can get round this
problem using an instance-based approach, which is based on the revised TrAdaBoost.
We will test this method for the urban simulation of different cities in the Pearl River Delta,
China.
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2. Knowledge transfer of CA based on the revised TrAdaBoost algorithm

This paper will present a domain adaptation method for using CA according to knowledge-
transfer techniques. This method is based on an instance-transfer approach, by which some
parts of the old instances are reused together with a few new labeled instances (e.g., new
samples with known land-use types) for a new application (target domain). The knowledge
transfer of CA is implemented by revising the TransferAdaBoost(TrAdaBoost) learning
algorithm. This algorithm was originally proposed by Dai et al. (2007), although some
modifications must be made in order to adapt it to the knowledge transfer of CA.

The procedure for the modifications includes: (1) defining logistic-CA as the basic
learner; and (2) revising the TrAdaBoost algorithm for constructing the ensemble of weak
logistic-CAs. Two types of labeled land-use data are used in this method, including the
abundant supply of auxiliary (old) labeled data from previous tasks (e.g., previous periods
or other regions) and a tiny set of the base (new) labeled data from the target domain. The
detailed methodology of this proposed model, CAtrans, is described as follows:

(1) Logistic-CA as the basic learner

The first step for building CAtrans is to define the basic learner, which is dependent on the
application domain. In this study, a typical urban cellular automaton, the logistic-CA, is
selected as the basic learner for urban simulation. The logistic-CA is quite easy to define
and convenient to calibrate using training data (Wu 2002, Li et al. 2011). The methodol-
ogy will be the same if the basic learner is replaced by other CA, such as ANN-CA (Li
et al. 2011) and genetic-CA (Li et al. 2008). The logistical model can be used to represent
the conversion probability from the non-urban to the urban land for simulating land-use
dynamics (Wu 2002). The conversion probabilities of CA are subject to change according
to a series of factors. This is quite different from the fundamental Markov assumption of
time-invariant transition probabilities (Rabiner and Juang 1986). The variant conversion
probability of logistic-CA is estimated as follows:

pt
ij
= exp(zt

ij
)

1 + exp(zt
ij
)

= 1

1 + exp( − zt
ij
)

(1)

where pt
ij

is the conversion probability for cell ij at time t, zt
ij

is the combined assessment
score for conversion suitability (zt

ij
= a0 + a1x

1
+ a2x

2
+ · · · + amx

m
+ · · · + aM x

M
), a0 is

the constant, xm is a spatial (physical) variable representing a driving force for land-use
conversion, and amis the parameter (weight) associated with variable xm.

The above combined score, pt
ij
, only addresses the global factors in terms of various

proximity variables. However, urban development is influenced by the interactions at local
as well as global levels. Moreover, some spatial constraints can be incorporated to reflect
the site conditions that also affect land-use conversion. By integrating all these geograph-
ical factors, the development probability for urban simulation is further revised as follows
(Li et al. 2011):

pt
ij
= (1 + (− ln γ )α)

1

1 + exp(−zt
ij
)

× f (�t
ij) × conij (2)
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1832 X. Li et al.

where γ is a stochastic factor ranging from 0 to 1, α is the parameter to control the stochas-
tic degree, f (�t

ij) is the development intensity in the neighborhood of �ij, and conij is the
total constraint score ranging from 0 to 1.

Finally, pt
ij

is compared with a threshold value to determine if a non-urbanized cell will
be converted into an urbanized cell at each iteration of simulation:

St+1
ij =

{
Converted, pt

ij
≥ Qland

NonConverted, pt
ij
< Qland

(3)

where St+1
ij is the state (land-use type) of cell ij at next time (t + 1), and Qland is the

threshold value which is related to the amount of land conversion.
The threshold (Qland) is calculated using observation data or an exogenous growth

model by predicting land demand. For example, this value can be determined in such a
way that the total number of converted cells will be equal to the real number estimated
from the observed remote-sensing data.

(2) Revised TrAdaBoost algorithm for logistic-CA

The second step for building CAtrans is to solicit transition rules of CA from old data plus
a tiny set of new data. The so-called boost algorithm will be used to find a set of weak
rules which are combined together to form the final prediction model. This algorithm is
implemented by adjusting the weights of these training data for learning a (weak) rule
accordingly from these weighted samples. This process allows the knowledge (transition
rules) from an old domain to be adapted into a new domain by minimizing the prediction
errors.

The AdaBoost algorithm, which was proposed by Freund and Schapire in 1995, has
been widely used for machine learning (Schapire 2001). However, AdaBoost requires that
the distributions of the training and test data must be identical. Dai et al. (2007) further
developed the so-called TrAdaBoost algorithm, which is based on AdaBoost, to tackle the
problem of different distributions. In our study, a revised TrAdaBoost algorithm is proposed
to use the labeled data collected in different regions or different periods for the domain
adaptation of CA.

Figure 1 illustrates how TrAdaBoost works for predicting land conversionbased on
independent variables. This figure shows an example of establishing a logistic regression
model between converted probability (urbanized or not) and development suitability. It is
difficult to obtain an accurate regression model if only a small amount of new training data
(blue points) is available in the target domain. The model built on these sparse data will be
inaccurate or wrong (dash line in Figure 1a). If there are a lot of old data (orange points)
with the same distribution as the new ones, these old data can be used to build a much
more accurate model (Figure 1b). However, it will be problematic to build the model if
these old data have a different (probability) distribution (Figure 1c). Figure 1d shows that
these old data can only be used appropriately with a weight-adjusted scheme according to
the assessment of these data. This scheme is to allow the old data that fit the target domain
better (yellow points in the dotted circles) to have larger weights for the prediction.

In our study, the modifications of TrAdaBoost include two aspects: (1) designing
a dynamicweight-trimming technique to facilitate the domain adaptation of CA; and
(2) embedding logistic-CA into TrAdaBoost for urban simulation. The detailed method-
ology for revising TrAdaBoost for urban simulation is described as follows:
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Figure 1. An example of TrAdaBoost algorithm for dealing with training data of different distri-
butions. (a) Obtaining a satisfactory regression model is difficult without enough new data. (b) Old
data can be directly used to train a satisfactory regression model if their distributions are the same.
(c) There is a problem to use old data directly because the distributions of new data and old data are
different. (d) The TrAdaBoost algorithm provides a way to use old data for training a better regression
model.

Step 1: Preparing the inputs.

The first step is to prepare the labeled land-use data and define the maximum number of
iterations (T) for the TrAdaBoost algorithm. The labeled land-use data provide the empir-
ical information for creating weak learners. The maximum number of iterations which
defines the set (ensemble) of weak learners is determined according to the iteration curve
of error rate (Dai et al. 2007). It is assumed that the improvement of prediction accuracy
will be stabilized after a certain number of iterations.

The labeled-land use data (instances) are usually obtained by classifying remote-
sensing images or carrying out field investigations. These instances include an auxiliary
(old) data set Da {(x1, y1) , · · · , (xN , yN )} (N is the number of old data) collected from
a previous task, and a base (new) data set Db {(xN+1, yN+1) , · · · , (xN+L, yN+L)} (L is the
number of new data) collected from a new task (xi ∈ X = Rp and yi ∈ Y = {1, 0}; Rp refers
to all the instances or the instance space in which each instance is assumed to be repre-
sented by a set of attribute–value pairs). In each instance (sample), the variables of x and y
represent the site attributes at a location and its category label (e.g., land-use type) respec-
tively. A Boolean function is used to map X to Y . The base learning algorithm is the above
logistic-CA.

Step 2: Initializing the weights for auxiliary data and base data.
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1834 X. Li et al.

These two labeled data sets (samples) usually have different distributions because of spa-
tiotemporal variations (Dai et al. 2007). A weight can be used to represent the importance
of a sample for the prediction. The first step is to initialize the weights for both auxil-
iary data and base data before calculating the weight decay factor of auxiliary data. It is
assumed that all these data can be used for regression or prediction, but the contribution of
each sample to the prediction varies according to its weight.

At the beginning, all these weights are initialized as equalfor both auxiliary data and
base data. These initial equal weights are defined as follows:

w1 (i) =
{

1
N If 1 ≤ i ≤ N

1
L If N + 1 ≤ i ≤ N + L

(4)

where N and L are the total numbers of the auxiliary data and base data, respectively.

Step 3: For u = 1, . . . , U, running the base learner (logistic-CA) and adjusting the
weight of each sample according to its prediction performance.

CAtrans is calibrated from a weighted set of auxiliary data (Da) and base data (Db). This CA
consists of a number of weak learners which are generated using different combinations of
these data. At each iteration, a part of auxiliary data and base data are randomly selected
to create a weak learner.

First, the weight of each sample (a pair of labeled data) is normalized using the
following equation:

w (i) = w (i)

/
N+L∑
i=1

w (i), 1 ≤ i ≤ N + L (5)

A dynamicweight-trimming technique is proposed so that TrAdaBoostcan be applied to the
knowledge transfer of CA. Only those samples whose weights are greater than a dynamic
threshold will be selected to generate a weak rule. This dynamic threshold is defined as
follows:

βu = mean (wu (1) , · · · , wu (N)) · γ , 0 ≤ γ ≤ 1 (6)

where γ is a random variable, and u is the current number of iterations (u = 1, . . . , U).
The above procedure will find a set of suitable samples for building a weak learner

(logistic regression model). This learner will map the land-use conversion according to the
following equation:

fu : X → {1, 0} (7)

where X is all the set of x (attributes).
The base data (Db) from the target domain is then used to estimate the model error of

this weak learner (fu) (Dai et al. 2007):

εu =
N+L∑

i=N+1

wu (i) Abs (fu (xi) − yi)

/
N+L∑

i=N+1

wu (i) (8)
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where εu is the model error, wu(i) is the weight of the ith sample, Abs(fu(xi)-yi) is the
difference between the predicted state (land-use type) from the logistic model and the true
state from the observation (the training data), and εu is required to be less than 0.5.

The weight decay factors for Da and Db are defined as follows (Dai et al. 2007):

α = 1/
(

1 + √
2 ln N/U

)
and αu = εu/ (1 − εu) (9)

The weights are dynamically updated according to the following equation (Dai et al. 2007):

wu+1 (i) =
{
wu (i) αAbs(fu(xu)−yu), 1 ≤ i ≤ N
wu (i) α−Abs(fu(xu)−yu)

u , N + 1 ≤ i ≤ N + L
(10)

Step 4: Generating the hypothesis according to the ensembles of weak learners.

The above procedure will create U number of weak learners. The model error will decrease
as the weights are updated according to Equation (10). As a result, the weak learners built
at the later stages will be better than their precedents in terms of classification accuracy.
In machine-learning literature, the hypothesis is that a given set of instances (or samples)
can be used to produce a learner, sometimes also called a classification rule (Schapire et al.
1998). The final output of the model is thus based on the ensembles of the last U/2 weak
learners (Dai et al. 2007):

argmax

⎛
⎝ U∑

u=U/2

αuI (fu (xi) = yi)

⎞
⎠ (11)

where I is a sign function in which, if f (x) = y, then I(f (x)) = 1, else I(f (x)) = 0.
The innovation of this proposed method is the integration of the revised TrAdaBoost

algorithm with logistic-CA. The final simulation is based on the ensembles of the last
U/2 weak logistic-CA. This proposed method can allow TrAdaBoost to be extended to the
knowledge transfer of urban simulation by dealing with different distributions of empirical
data.

3. Model implementation

3.1. Study areas and spatial data

The proposed method was tested in the Pearl River Delta, which has an area of about
41,157 km2. Situated in the mid-south of Guangdong, this study area consists of a
number of administrative cities and districts, such as Guangzhou, Dongguan, Shenzhen,
Zhongshan, and Foshan (Figure 2). Guangzhou is the largest city in southern China, and
includes the city proper, Huadu district, Conghua district, Zengcheng district, and Panyu
district. Before the economic reform in 1978, a major part of this region was engaged in
intensive agricultural activities (e.g., growing rice, sugar cane, or banana) and fisheries
(Seto et al. 2002). As a result of fast urbanization, this region has witnessed a large amount
of land-use conversion and agricultural land loss. There is rich literature on the develop-
ment of change detection and urban simulation methods for revealing urbanization and
land-use problems in this fast-growing region (Seto et al. 2000, 2002, Li et al. 2008).
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1836 X. Li et al.

Figure 2. Location of the study area in the Pearl River Delta.

The labeled land-use data which were used to calibrate CA models were obtained from
the classified Landsat TM images. Land-use classification was applied to the Landsat TM
images of Guangzhou scene (Scene No. 122–44 in China Remote Sensing Ground Station
reference system) dated 31 July 1986, 24 October 1994, 28 July 2000, and 4 March 2008,
respectively. These images were radiometrically and geometrically corrected before the
classification. First, the dark object subtraction (DOS) method was used to minimize the
influences of different weather and light conditions on land-use classification (Chavez
1988). This procedure was implemented using the dark subtract tool of ENVI. Second,
geometric corrections of these images were performed according to ground-control points.
The total Root Mean Square (RMS) error of the geometric correction was less than 0.5 pix-
els. These corrected images were then classified using a series of techniques, such as
object-based classification, manual editing, and intensive field labeling with GPS.

The classification accuracies for urban land uses are about 86–89% according to field
checking (Chen et al. 2011). This means that the classification has an error of 11–14%.We
used the method proposed by Pontius and Millones (2011) for comparing this error with the
land-use changes across time. This method divides the disagreements between classifica-
tion and reference into two parameters: quantity disagreement and allocation disagreement.
We calculated the quantity and allocation disagreements with random sampling method for
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Land-use
data 1986

(a)
Quantity Allocation

Land-use
data 1994

Land-use
data 2000

Land-use
data 2008

Non-urban
persistence
Urban areas
in 2000
Urban growth
during 2000 –2008

0.00 0.02

N

0 5 10 20 km

0.04 0.06 0.08
Disagreement

(b)

0.10 0.12 0.14

Figure 3. The classification accuracy of the land-use data. (a) Quantity and allocation disagree-
ments and (b) consistency of the land-use classification over time.

the land-use data from 1986 to 2008. Figure 3a shows the two components of disagreement,
which are stacked to show the total disagreement for these four years. The majority of dis-
agreement comes from allocation disagreement, ranging from 8% to 10%, whereas the
quantity disagreement is only 3–4%. Figure 3b just displays the urban growth for a part
of the study area during 2000–2008, with the urban growth ratio ranging from 12.2% to
21.3%. The average classification disagreement is 11.7% for years 2000 and 2008, which
is less than the difference (related to urban growth) between each pair of sequential maps.

We selected three cities/districts, Guangzhou, Panyu, and Shenzhen, to examine
the effects of spatiotemporal knowledge transfer for urban simulation. Three sets of
labeled data were collected for Guangzhou (7 districts), Panyu (1 district), and Shenzhen
(Figure 4). Each set consists of training data and test data. The sites for collecting these data
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1838 X. Li et al.

Figure 4. Obtaining three sets of labeled data for (a) Guangzhou, (b) Panyu, and (c) Shenzhen from
classified remote-sensing data.

were determined based on the criteria of covering broad geographical locations and diverse
land types. The detailed information about these labeled data is described as follows:

(1) Guangzhou labeled data

Guangzhou labeled data over two periods, 1986–1994 and 2000–2008, were used to build
the temporal knowledge-transfer model for urban simulation. The Thematic Mapper (TM)
images of 1986, 1994, 2000, and 2008 were classified to obtain the labeled data for land-use
classes in 1986–1994 and 2000–2008, respectively. A total of 42 sites (patches) were iden-
tified for the period of 1986–1994 (Figure 4a). Within these sites, we randomly extracted a
total of 2723 samples. These data were divided into two sets, 1000 as the training samples
and 1723 as the test samples. A total of 51 sites (patches) were also investigated for the
period of 2000–2008. These sites randomly yielded a total of 2109 pixels as the labeled
data, which were divided into 1000 training samples and 1109 test samples.
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(2) Panyu labeled data

Spatio-knowledge transfer for building the transition rules of CA was implemented using
two sets of labeled data from Guangzhou and Panyu in 2000–2008. Besides the above
Guangzhou’s data, Panyu’s labeled data of land-use classes were obtained from the clas-
sified 2000 and 2008 TM images. We selected 53 sites (patches) for collecting Panyu’s
training and test data (Figure 4b). A total of 2390 samples were randomly extracted from
these sites. These samples were further split into 1000 training samples and 1390 test
samples for building and validating the proposed model, respectively.

(3) Shenzhen labeled data

Shenzhen’s labeled data in 2000–2008 were also acquired to test the effects of spatio-
knowledge transfer for urban simulation. A total of 42 sites (patches) were selected for
obtaining Shenzhen’s training and test data (Figure 4c). A random selection from these
sites created a total of 2620 samples, which were further divided into 1000 training samples
and 1620 test samples, respectively.

The basic learner (logistic-CA) consists of two components of interactions, global
interaction and local interaction, for addressing urban and land-use dynamics. The global
interaction is represented by a logistic function of various proximity factors (e.g., urban
centers, highways, and railways). The local interaction is represented by a neighbor-
hood function of various land-use types (e.g., the amount of a land-use class in the
neighborhood). The importance of these proximity factors and the neighborhood effects
of land use for urban simulation have been extensively discussed by previous studies
(White and Engelen 1993, Clarke et al. 1997, Verburg et al. 2002, Wu 2002, Li et al.
2008).

3.2. Experiments and model parameters

Knowledge transfer for urban and land-use simulation can be carried out in two folds,
spatio transfer and temporal transfer. Three experiments were designed to examine the
effects of spatiotemporal knowledge transfer with the use of the three labeled data sets
above (Table 1).

Table 1. Three experiments of spatiotemporal knowledge transfer for urban simulation using
various sets of labeled data.

Data Region Period

Experiment 1
Base data set (Db) Panyu 2000–2008
Auxiliary data set (Da) Guangzhou 2000–2008

Experiment 2
Base data set (Db) Shenzhen 2000–2008
Auxiliary data set (Da) Guangzhou 2000–2008

Experiment 3
Base data set (Db) Guangzhou 2000–2008
Auxiliary data set (Da) Guangzhou 1986–1994
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Experiment 1 (spatio-knowledge transfer from Guangzhou to Panyu)

The aim of the first experiment is to study the effects of spatio-knowledge transfer between
the places at a closer distance (from Guangzhou district to Panyu district). The labeled data
were previously collected in a larger area (Guangzhou). They will be used as the auxiliary
data to facilitate urban simulation for a small, nearby area (Panyu). Although there is plenty
of previously collected data (auxiliary data) in Guangzhou, some of the new data (base
data) is still required for simulation at this new region (Panyu).

Experiment 2 (spatio-knowledge transfer from Guangzhou to Shenzhen)

The aim of this experiment is to examine the possibility of spatio-knowledge transfer
between places that are further apart (from Guangzhou to Shenzhen). The labeled data
previously collected in Guangzhou will be used for the simulation of another large city
(Shenzhen), which is about 150 km away. Although sharing some similarities, these two
cities have experienced quite different growth patterns during the study periods (Li et al.
2008).

Experiment 3 (temporal knowledge transfer from 1986–1994 to 2000–2008)

This experiment was just designed for the temporal knowledge transfer between different
periods (from 1986–1994 to 2000–2008), but at the same place. In this experiment, the
data previously collected in Guangzhou during the period1986–1994 were used for the
simulation of the same city during the period 2000–2008.

The objective of these experiments is to explore the potential of using a large amount
(e.g., 500 samples) of previously collected auxiliary (old) data set (Da) with a tiny amount
(e.g., 10–15 samples) of currently collected base (new) data (Db) to construct CA mod-
els. There is usually a large amount of empirical data accumulated from past applications.
It will be attractive if these data can serve as the empirical information for building a new
simulation model. In the experiments, different combinations (ratios) of Db/Da are tested
to identify the minimal amount of new data which is required for building the model. The
amount of Da is fixed to 500 samples while the amount of Db is changed from 10 to 50 sam-
ples for the exploration. The data of Db and Da are randomly drawn from the labeled data
described in section 3.1. In Experiment 1, for example, 10 samples of Db were randomly
drawn from the 1000 training samples of Panyu and 500 samples were randomly drawn
from the 1000 training samples of Guangzhou. The ratio of Db/Da is then equal to 2%.
A total of 21 combinations with the variations of Db/Da were obtained using this random
sampling procedure. Each combination was repeated 10 times to reduce the uncertainties
by randomly selecting these samples. Then, the final simulation was obtained from the
average of the 10 repeated simulations.

The first step is to determine the ensemble size (the total number) of basic learners
for producing satisfactory prediction results. A larger size of the ensemble can reduce
the model error, but this will be at the expense of longer computation time. Actually, the
ensemble size is decided according to the convergence curve of model error. We found
that the decrease of the model error will be stabilized after the iteration (u) reaches 20 for
most of the combinations (Figure 5). The maximum number of iterations (U) is determined
based on the convergence trend. The value of U is set to 50, as some combinations may
need to run 40–60 iterations in order to reach convergence. The total number of weak learn-
ers which are used for the simulation is, thus, equal to 25 (U/2) according to Equation 11.
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Figure 5. The error rate of the basic learner with the increase of the iteration (T) for the Shenzhen
data set.

3.3. Knowledge transfer of transition rules in spatiotemporal dimensions

There are at least four major methods for implementing the knowledge transfer of CA
using TrAdaBoost and LogisticCA. These methods are: (1) the proposed model based on
the integration of TrAdaBoost and LogisticCA (CAtrans); (2) traditional LogisticCA based on
the new data (CAnew data); (3) traditional LogisticCA based on the whole set of old data and
new data (CAall data); and (4) traditional LogisticCA just based on the old data (CAold data).

These four models adopt different strategies of handling old and new labeled data. First,
the proposed model (CAtrans) treats these two different sets of data according to the weights
defined from the revised TrAdaBoost algorithm. It is expected that this method can well
tackle the diff-distributionproblem with the use of these weights. Second, the traditional
method of CAnew data is to construct the model from scratch. This method is not efficient
because it abandons all the previously collected labeled data. Third, the method of CAall data

simply utilizes all these data for calibrating CA without considering their potential diff-
distribution. This diff-distribution can cause the poor performances of simulation if the
distribution bias of two sets of training data is large. Fourth, the method of CAold data also
has drawbacks because this previously built CA is outdated without domain adaptation.

We use ‘figure of merit’ (FoM) to assess the simulation results of these models (Pontius
et al. 2008). The FoM measurements in these experiments were derived from overlays of
the reference map of the initial time, the reference map of the subsequent time, and the
prediction map for the subsequent time. This indicator focuses on change instead of giving
credit to correctly predicted persistence. Actually, FoM is a ratio, where the numerator is
the intersection of the observed change and predicted change, while the denominator is the
union of the observed change and predicted change (Pontius et al. 2008).

4. Results and validation

Experiment 1

The aim of this experiment is to test if the samples collected in Guangzhou can be reused
for implementing urban simulation in Panyu. Figure 6a displays the relationship between
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1842 X. Li et al.

Figure 6. The figure of merit (FoM) of the simulation from the four methods. (a) Experiment 1
(from Guangzhou to Panyu), (b) Experiment 2 (from Guangzhou to Shenzhen), and (c) Experiment
3 (from Guangzhou to Shenzhen).
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FoM and the ratio of Db/Da of these four models. This figure clearly shows that the pro-
posed method (CAtrans), which uses the combination of Db and Da data, has a higher FoM
value than CAnew data if the amount of Db is small. The fewer the new data, the more effects
the proposed method will have for improving the simulation accuracy in terms of FoM.
If there is a large amount of new data, however, the performance is almost the same as that
of CAnew data (the traditional method of building CA from scratch).

Compared with CAnew data, CAtranscan increase the FoM value by 25.96% if there are
only 10 samples (Ratio = 2%) of new data. Using 30 samples (Ratio = 6%) of new data,
CAtranscan produce 98.52% of the FoM value that CAnew data can do with 250 samples
(Ratio = 50%) of new data.

It is interesting to find that the blue curve of CAall data (using all these data with an
equal weight) decreases with an increase in the Db/Da ratio for Experiment 1. This means
that by adding more new data to the study area, the model yields even worse results. The
explanation is that CAall data cannot handle these data well because they have different
distributions.

Experiment 2

This experiment is to carry out the knowledge transfer between two places at a greater
distance apart (from Guangzhou to Shenzhen). Figure 6b clearly confirms that the pro-
posed method (CAtrans) has much better performance than the other three methods if the
ratio of Db/Da is less than 6%. CAtranscan increase the FoM value by 44.14% if there are
only 10 samples (Ratio = 2%) of new data, compared with the CAnew data. This proposed
method can produce 96.58% of the FoM value that traditional CA (CAnew data) produces
with 250 samples (Ratio = 50%) of new data. However, the performance of this proposed
model is close to that of the traditional method (CAnew data) if a large amount of new data is
available.

Experiment 3

This experiment is to compare the effect of temporal knowledge transfer using differ-
ent periods of collected data at the same location. The labeled data include the auxiliary
data set (Da) and the base data set (Db) for Guangzhou during the periods1986–1994 and
2000–2008, respectively.

This experiment also confirms that a tiny set of new data can be used to implement
temporal knowledge transfer using the proposed method. Figure 6c shows that CAtrans pro-
duces the highest simulation accuracy for all the sampling ratios. This method improves the
FoM value by 14.82%, compared with CAnew data. The effect is more obvious if the amount
of new data is small (Ratio <10%).

These two methods, CAold data(the back dash line)and CAall data, also yield almost the
same simulation results as CAtrans. This means that even the old data can be directly used
for producing very good simulation results. The reason is that the growth patterns of this
study area have not changed much between 1986–1994 and 2000–2008. This characteristic
is the main reason why CA models can have the predictive capability if they are applied to
the same study area.

The final simulated patterns of urban development for these regions were obtained
using these four models. Figure 7a–d only shows the comparison of the simulated results
of CAtrans and CAnew data for Experiment 1 and Experiment 2. These simulated patterns are
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Figure 7. Simulation of urban growth using 10 base training samples: (a) Experiment 1 using
CAnew data; (b) Experiment 1 using CAtrans; (c) Experiment 2 using CAnew data; and (d) Experiment
2 using CAtrans.

compared with the reference map for the subsequent time. The areas in green are the cor-
rectly simulated while those in red (persistence simulated as change) and blue (change
simulated as persistence) are the falsely simulated. We found that CAnew data performs
much worse than the proposed method with more areas of red and blue (Figure 7a and
c). However, a more realistic pattern can be simulated using the proposed method, CAtrans

(Figure 7b and d). These figures reveal an interesting fact that the falsely simulated patches
are usually situated in remoter areas away from urban centers. Future efforts are required
to improve the simulation accuracies in these remoter areas.

The above experiments are based on a fixed amount of old data (500 samples) and
variable amounts of new data. In most situations, the FoM value stabilizes if the ratio of
Db/Da is larger than 15%. The dependency of the simulation accuracy on the ratio is just
a matter of uncontrolled variation of the data after the threshold. This indicates that the
knowledge-transfer method is only useful when new data for calibrating CA are sparse.
Experiments 1 and 2 show that the red curves of traditional CAnew data can catch up very
quickly with the green curves of CAtrans and yield almost the same result at about 6%
(or 35 new samples) of the Db/Daratio. This means that the traditional CA can do a very
good job with about 30–40 new samples. However, we argue that field investigations for
collecting these additional new data may not be easy for a number of reasons, such as
labor costs, inexperienced users, and limited knowledge about the study area. Previous
studies have also indicated that labeling data is expensive and sample size must be kept
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to a minimum (Congalton 1991). Interpolation is often carried out to obtain the attribute
values for each spatial element because sampling is expensive and data points are sparse
(Heuvelink et al. 1989). Our above experiments have shown that knowledge transfer is a
good option to solve such a data problem for calibrating simulation models.

It is appealing that the amount of new required data can be reduced using available
(old) data as much as possible. A further experiment was designed to examine how these
new data can be reduced if old data are available. In this experiment, the amount of old
data will be changed to examine this possibility. Figure 8a shows the FoM value using dif-
ferent amounts of new data with respect to 20 and 100 old samples. As mentioned before,

Figure 8. The figure of merit (FoM) and its variances using 20 and 100 old samples. (a) Figure
of merit (FoM) (from Guangzhou to Shenzhen) and (b) variances of FoM (from Guangzhou to
Shenzhen).
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all these accuracies were obtained by randomly drawing the samples 10 times and yield-
ing 10 simulations. Figure 8b is the variance of FoM for the transfer between Guangzhou
and Shenzhen. This figure clearly indicates that the variance of traditional CA is large
(2–5 times the variance of the proposed method) until the number of new data reaches 30.
This means that traditional CA will yield much larger errors than the proposed methodif
there are not enough new data. However, the proposed method can obviously reduce the
uncertainties even if the amount of new data is small (within 5–30). Moreover, the FoM
value of the proposed method is 6–50% higher than that of the traditional method before
the threshold (30 new samples). These figures also indicate that 100 old samples will pro-
duce better performances than 20 old samples under the same condition. In terms of the
FoM value, the use of 25 new samples for the proposed method is almost equivalent to
the use of 50 new samples for the traditional method. The efficiency is quite clear because
50% of the labor costs will be saved if field investigations are required to label the data
(obtaining land-use classes in the field).

5. Conclusions

Calibration of CA models is often faced with the bottleneck of collecting field information
in large complex areas. Serious field investigations rely on experience and knowledge of
the study area. Model adaptation is necessary if existing models are reused for solving new
simulation problems. Transfer learning techniques can be employed to reduce the costs of
building new models.

This study has demonstrated that the knowledge transfer for urban simulation can be
based on the integration of logistic-CA and TrAdaBoost. A number of experiments were
carried out to examine the applicability of this proposed method under different situa-
tions. Experiment 1 tested the spatio-knowledge transfer for urban simulation between two
close regions. With the increase of accuracy up to 25.96%, this proposed model, CAtrans,
can produce better simulation results than traditional methods. This experiment utilizes
a tiny amount of new samples (e.g., 10–15 samples) and a large amount of old samples.
Experiment 2, which is to test knowledge transfer between two more distant regions, also
yields much better results for the spatio-knowledge transfer, with the increase of accuracy
up to 44.14%.

Our analysis indicates that knowledge transfer can alleviate the problems of uncertain-
ties if there are a few new data for calibrating CA models. Instead, traditional methods
have limitations to produce reliable simulation results without enough new data (e.g., less
than 15 new samples). However, our proposed method can handle this problem of sparse
data well. Generally speaking, this method can save 50% of the labor costs using existing
knowledge from the empirical data.

Experiment 3 indicates that the proposed model is able to implement the temporal
knowledge transfer of transition rules. However, itdoesnothave obvious advantages over
traditional methods. The analysis shows that the performances of CAold data and CAall data,
which use old data for calibrating model directly,are as good as the performances of the
proposed model. This confirms the fact that CA models can be used to simulate future
land-use dynamics if the historical trend of urban dynamics continues.

We find that more simulation errors happen in remoter areas away from urban centers.
Stronger reinforced calibration will be taken in these areas to improve simulation accura-
cies in our future studies. There is also a need to consider the implementation of knowledge
transfer using multi-sources of previously collected data. It would also be interesting to
develop the methods of knowledge transfer for constructing other bottom-up models, such

D
ow

nl
oa

de
d 

by
 [

T
he

 S
ci

en
ce

 a
nd

 T
ec

hn
ol

og
y 

L
ib

ra
ry

 o
f 

G
ua

ng
do

ng
 P

ro
vi

nc
e]

 a
t 0

6:
00

 2
6 

Ja
nu

ar
y 

20
14

 



International Journal of Geographical Information Science 1847

as agent-based models. Moreover, the simulation model can incorporate other exogenous
forces, such as land-use policy, which will affect land-use dynamics. In the future studies,
we also need to examine how the effect of spatio-knowledge transfer is related to the sim-
ilarity between two cities, and we must consider the measurement of similarity. Perhaps,
some indicators can be developed so that urban structures and growth patterns can be
quantified to give users the information as to whether or not the knowledge transfer is
appropriate.
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